Computer-Based Guidelines for Concrete Pavements: HIPERPAV[®] III **USER MANUAL**

PUBLICATION NO. FHWA-HRT-09-048

OCTOBER 2009

U.S. Department of Transportation Federal Highway Administration

Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296

FOREWORD

The High PERformance PAVing (HIPERPAV[®]) III software program is a comprehensive yet user-friendly software package. This software program will be of interest to those involved in concrete pavement mix designs as well as the design and construction of concrete pavements. In this user manual, guidance is given on how to use the new HIPERPAV[®] III software program for the analysis of early-age Portland cement concrete pavement (PCCP) behavior.

Information on investigating, modeling, and validating the enhanced HIPERPAV[®] III is included in the report *Computer-Based Guidelines for Concrete Pavements: HIPERPAV III, Moisture Transport, and Sensitivity Analysis* (Report No. PB2009-115483). The report is distributed through the National Technical Information Service (NTIS).

> George Pagan-Ortiz Director, Office of Infrastructure Research and Development

Notice

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

Quality Assurance Statement

The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.

TECHNICAL DOCUMENTATION PAGE

			IOI (IIIOE					
1. Report No. FHWA DTFH61-99-C-00081	2. G	overnment Accession No.	3. Recipient	's Catalog No.				
4. Title and Subtitle			5. Report Da	ite				
Computer-Based Guidelines for Cond	crete P	avements: HIPERPAV [®] III	October 200	9				
User Manual			6 Performin	g Organization Code				
			N/A	g organization cou	,			
7. Author(s)			8. Performin	g Organization Repo	ort No.			
Qinwu Xu, J. Mauricio Ruiz, George	K. Ch	ang, Jason C. Dick,	N/A					
Sabrina I. Garber, and R.O. Rasmuss	en							
9. Performing Organization Name an	d Add	ress	10. Work Ui	nit No. (TRAIS)				
The Transfec Group Inc								
6111 Balcones Dr	11 Contract	or Grant No						
Austin TX 78731			DTELICI 06	C = 00042				
Austin, 1X /0/51			D1FH01-00	-C-00042				
12 Sponsoring Organization Name and Address 13 Type of Report and Period Covered								
Federal Highway Administration			Final Report	June 2008 to Augu	st 2009			
6300 Georgetown Pike			14 Sponsor	ng Ageney Code	30 2009			
McLean VA 22101_2296			14. Sponson	ng Agency Code				
McLean, VA 22101-2296								
15. Supplementary Notes								
The Contracting Officer's Technicar	Repres	sentative was rieu ranuazai, m	NDI-11.					
16. Abstract	1		DALC (1					
This user manual provides guidance of	on how	to use the new High PERform	ance PAVing (I	HIPERPAV [*]) III sof	tware			
program for the analysis of early-age	Portla	nd cement concrete pavement (PCCP) behavio	r. HIPERPAV® III 11	ncludes			
several improvements over previous	version	ns including (1) improvements t	o the interface	to allow users to nav	igate			
through the software program with m	ore ea	se; (2) the ability to characterize	e heat evolution	of a particular ceme	ent paste to			
improve the precision of the software	progr	am's models; (3) the addition of	f a batch mode	to allow users to ana	lyze several			
strategies at once; and (4) the incorpo	ration	of a comparisons module with	sensitivity anal	ysis tools to offer use	ers the			
opportunity to quickly discern differences in the effects of environmental, design, and construction variables on strength								
gain, stress development, and early-age strength-to-stress relationships.								
Sun, suces development, and early age suchgar-to-suces relationships.								
The objectives of this research project	t were	to enhance the moisture transp	ort modeling in	the HIPERPAV [®] so	ftware			
program and to add features to furthe	r impr	ove the software program. The	moisture model	study primarily cov	ered the			
following content: (1) a literature rev	iew an	d evaluation of moisture transp	ort models for a	concrete materials an	d			
navements: (2) the development of a	moist	transport model: (3) a mathe	matical solution	offer the moisture tra	insport			
model using the one dimensional fini	to diff	are transport model, (3) a matter	ming of the mo	isture transport mod	alusing			
EQD TD $A N^{\mathbb{R}}$ and $VD A^{\mathbb{R}}$ and inc: (5) a		finite analysis of the offsets of m	and al maramata	ra anviranmental an	a using			
FORTRAIN and VBA coding, (3) a	sensi	ivity analysis of the effects of h	nouer paramete	is, environmental and	u nintrano			
construction conditions on the moist	re trar	isport, and critical stresses and s	strengths; (6) th	e validation of the m	ioisture			
transport model: and (7) the incorport	ation c	of the moisture transport model	into the HIPER	PAV° software prog	ram. The			
investigation, modeling, and validation	on of the	he enhanced HIPERPAV [®] III ar	e included in the	e report Computer-E	3ased			
Guidelines for Concrete Pavements:	HIPEI	RPAV III, Moisture Transport, S	Sensitivity Analy	sis (Report No. PB2	.009-			
115483). The report is distributed thr	ough t	he National Technical Informat	ion Service (NT	TS). Previously publ	lished			
HIPERPAV II reports are (1) Compu	ter-Ba	sed Guidelines for Concrete Pa	vements, Volun	ie I: Project Summar	у (FHWA-			
HRT-04-121); (2) Computer-Based (Fuideli	nes for Concrete Pavements, Vo	olume II: Desig	n and Construction (Guidelines			
and HIPERPAV II User's Manual (F	HWA-	HRT-04-122); and (3) Compute	er-Based Guide	lines for Concrete P	avements.			
Volume III: Technical Appendices (F	HWA-	-HRT-04-127).		5	,			
17 Key Words			18 Distribut	tion Statement				
Moisture Transport Concrete Paver	nent N	Andel Drving Self-designation	N. Distribut					
Finite difference method Programmi	no HI	$PFRPAV^{\mathbb{R}}$ software program	No restrictio	ns. This document is	available			
Validation Sensitivity analysis	11 <u>5</u> , 111	i Liti A v Soitware program,	to the public	through the Nationa	I Technical			
vanuation, Sensitivity analysis			Information	Service; Springfield	, VA 22161			
19. Security Classification (of this re	port)	20. Security Classification (of	this page)	21. No. of Pages	22. Price			
Unclassified.	,	Unclassified.	/	21	NA			
· · · · · · · · · · · · · · · · · · ·					· · · · ·			

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

	SI* (MODEF	N METRIC) CONVER	SION FACTORS	
	APPR	OXIMATE CONVERSIONS	TO SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
rni	miles		kilometers	КШ
in ²	square inches	645 2	square millimeters	mm ²
ft ²	square feet	045.2	square meters	m^2
vd ²	square vard	0.095	square meters	m ²
ac	acres	0.405	hectares	ha
mi ²	square miles	2.59	square kilometers	km ²
		VOLUME		
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m³
yd ³	cubic yards	0.765	cubic meters	m
	NOT	E: volumes greater than 1000 L shall be	e shown in m	
		MASS		
OZ	ounces	28.35	grams	g
	short tons (2000 lb)	0.454	Kilografiis	Kg Ma (or "t")
1	Short tons (2000 lb)	TEMPERATURE (oxact dog		wig (or t)
°⊏	Eabranhait			°C
Г	Famermen	or (E-32)/1 8	Celsius	C
fc	foot-candles	10.76	lux	ly.
fl	foot-Lamberts	3.426	candela/m ²	cd/m ²
		FORCE and PRESSURE or SI	RESS	
lbf	poundforce	4 45	newtons	N
lbf/in ²	poundforce per square in	nch 6.89	kilopascals	kPa
Symbol	When You Know			Symbol
Symbol			10 Filld	Symbol
mm	millimotors		inchos	in
m	meters	3 28	feet	ft
m	meters	1 09	vards	vd
km	kilometers	0.621	miles	mi
		AREA		
mm ²	square millimeters	0.0016	square inches	in ²
m ²	· ,			
-	square meters	10.764	square feet	ft ²
m ²	square meters square meters	10.764 1.195	square feet square yards	ft ² yd ²
m ² ha	square meters square meters hectares	10.764 1.195 2.47	square feet square yards acres	ft ² yd ² ac
m² ha km²	square meters square meters hectares square kilometers	10.764 1.195 2.47 0.386	square feet square yards acres square miles	ft ² yd ² ac mi ²
m ² ha km ²	square meters square meters hectares square kilometers	10.764 1.195 2.47 0.386 VOLUME	square feet square yards acres square miles	ft ² yd ² ac mi ²
m ² ha km ² mL	square meters square meters hectares square kilometers milliliters	10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	square feet square yards acres square miles fluid ounces	ft ² yd ² ac mi ² fl oz
m ² ha km ² mL L	square meters square meters hectares square kilometers milliliters liters	10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314	square feet square yards acres square miles fluid ounces gallons ubio foot	ft ² yd ² ac mi ² fl oz gal
m ² ha km ² mL L m ³ m ³	square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters	10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	ft ² yd ² ac mi ² fl oz gal ft ³ yd ³
m ² ha km ² mL L m ³ m ³	square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters	10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS	square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	ft ² yd ² ac mi ² fl oz gal ft ³ yd ³
m ² ha km ² mL L m ³ m ³	square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters	10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035	square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	ft ² yd ² ac mi ² fl oz gal ft ³ yd ³
m ² ha km ² mL L m ³ m ³ g kg	square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms	10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds	ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb
m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric t	10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 on") 1.103	square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb)	ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric t	10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 on") 1.103 TEMPERATURE (exact deci	square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) rees)	ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C	square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric to Celsius	10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 on") 1.103 TEMPERATURE (exact degr 1.8C+32	square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) rees) Fahrenheit	ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C	square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric to Celsius	10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 on") 1.103 TEMPERATURE (exact degu 1.8C+32 ILLUMINATION	square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) rees) Fahrenheit	ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C	square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric t Celsius	10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 0.035 2.202 0.035 2.202 0.035 2.202 1.103 TEMPERATURE (exact degu 1.8C+32 ILLUMINATION 0.0929	square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) rees) Fahrenheit	ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C lx cd/m ²	square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric to Celsius lux candela/m ²	10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 on") 1.103 TEMPERATURE (exact degu 1.8C+32 ILLUMINATION 0.0929 0.2919	square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) rees) Fahrenheit foot-candles foot-Lamberts	ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl
m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C lx cd/m ²	square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric to Celsius lux candela/m ²	10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 0.035 2.202 0.035 2.202 0.035 2.202 1.103 TEMPERATURE (exact degr 1.8C+32 ILLUMINATION 0.0929 0.2919 FORCE and PRESSURE or ST	square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) rees) Fahrenheit foot-candles foot-Lamberts	ft ² yd ² ac mi ² fl oz gal ft ³ oz lb T °F fc fl
m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C lx cd/m ²	square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric t Celsius lux candela/m ² newtons	10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 0.035 2.202 0.035 2.202 0.035 2.202 1.103 TEMPERATURE (exact degr 1.8C+32 ILLUMINATION 0.0929 0.2919 FORCE and PRESSURE or ST 0.225	square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) rees) Fahrenheit foot-candles foot-Lamberts TRESS poundforce	ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl lbf

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)

TABLE OF CONTENTS

HIPERPAV [®] III USER MANUAL	.1
BASIC INPUTS	.1
ENHANCED MOISTURE MODEL	.2
EFFECT OF BASE MOISTURE	.3
MOISTURE LOSS DUE TO EVAPORATION	.4
IMPROVED INTERFACE	.4
HEAT EVOLUTION CHARACTERIZATION	.7
BATCH MODE ANALYSIS	.9
COMPARISONS MODULE	.9
ACKNOWLEDGMENTS1	5
REFERENCE1	17

LIST OF FIGURES

 Figure 2. Screenshot. Construction input screen	
Figure 3. Screenshot. Simple strategy view Figure 4. Screenshot. Advanced strategy view Figure 5. Screenshot. Simple strategy view analysis results Figure 6. Screenshot. Heat of hydration input data Figure 7. Screenshot. Semiodiabatic calorimetry input data required for heat of hydration	
Figure 4. Screenshot. Advanced strategy view Figure 5. Screenshot. Simple strategy view analysis results Figure 6. Screenshot. Heat of hydration input data Figure 7. Screenshot. Semiadiabatic calorimetry input data required for heat of hydration	
Figure 5. Screenshot. Simple strategy view analysis results Figure 6. Screenshot. Heat of hydration input data	
Figure 6. Screenshot. Heat of hydration input data	0
Figure 7 Spreagehot Somiadiabatic colorimetry input data required for best of hydration	0
Figure 7. Screenshot. Semiadiabatic calorimetry input data required for heat of hydration	
calculations	8
Figure 8. Screenshot. Batch mode analysis	9
Figure 9. Screenshot. Quick compare chart of differences	10
Figure 10. Screenshot. Sensitivity comparison wizard	11
Figure 10. Screenshot. Sensitivity comparison wizard Figure 11. Screenshot. Stress-to-strength ratio screen	11 12
Figure 10. Screenshot. Sensitivity comparison wizard Figure 11. Screenshot. Stress-to-strength ratio screen Figure 12. Screenshot. Sensitivity summary screen for PCC mix temperature	11 12 12

HIPERPAV[®] III USER MANUAL

In this user manual, guidance is given on how to use the new HIPERPAV[®] III software program for the analysis of early-age Portland cement concrete pavement (PCCP) behavior. HIPERPAV[®] III includes several improvements from previous versions (i.e., HIPERPAV[®] and HIPERPAV[®] II). This user manual describes the following features in detail:

- The incorporation of an enhanced moisture model that improves the accuracy of the software's predictions.
- An improved interface that allows users to navigate through the software with more ease.
- The ability to characterize heat evolution of a particular cement paste that improves the precision of the software's models.
- A batch mode that allows users to analyze several strategies at once.
- A comparisons module that includes sensitivity analysis tools to offer users an opportunity to quickly discern differences in the effects of environmental, design, and construction variables on strength gain, stress development, and early-stage strength-to-stress relationships.

BASIC INPUTS

As in HIPERPAV[®] II, analysis in HIPERPAV[®] III begins by entering basic inputs including a description of the project and location. Figure 1 shows a map on which users pinpoint the location of the project. The next step in the analysis process is creating strategies based on structural design, mix design, construction condition, and climate information. Additional details can be found in the accompanying report *Computer-Based Guidelines for Concrete Pavements, Volume II: Design and Construction Guidelines and HIPERPAV II User's Manual* (FHWA-HRT-04-122).

🐱 Untitled * - HIPERPAV III	
File Edit View Strategy Comparison T	ools Help
``````````````````````````````````````	Project Info 🕺 Strategies 🔀 Comparisons
📌 🗨 🗨 🗖 🖑 🛛 EA JPCP 🖵	Geography
<ul> <li>Project Information</li> <li>Geography</li> <li>Monthly Weather Data</li> </ul>	Station     State     Weight (%)     ▼       Austin     TX     90       San Antonio     TX     4       Waco     TX     4       Victoria     TX     2       Abilene     TX     2       Abilene     TX     2       Akron     OH       Alamosa     CO

Figure 1. Screenshot. Project location (Austin, TX).

# ENHANCED MOISTURE MODEL

An enhanced moisture model was incorporated into HIPERPAV[®] to increase the accuracy of early-age behavior predictions. In previous versions of HIPERPAV[®], mathematical models used to calculate early-age behavior focused primarily on temperature effects. However, moisture in Portland cement concrete (PCC) and its migration through the concrete's pore structure has a great influence on PCCP early-age behavior, and it needs to be accounted for.

Moisture content in concrete is influenced by factors such as type of base, water-to-cement ratio, type of cement, admixtures, supplementary cementitious material, aggregates, temperature, wind speed, relative humidity of air, and type of curing. Changes in moisture content are the result of drying due to hydration, evaporation, or moisture transport into the base. As the concrete dries, it shrinks. This shrinkage, coupled with temperature gradients, causes axial, curling, and warping movements. These movements create tensile stresses in the concrete and ultimately create the potential for early-age cracking.

The potential for early-age cracking due to moisture content is calculated in HIPERPAV[®] III by a one-dimensional finite-difference model that relates materials, environmental effects, and curing procedures for PCCP.

#### **EFFECT OF BASE MOISTURE**

A large effect on stresses as a function of the base moisture was identified during the development of the moisture model. As a result, an input to identify the moisture state of the base/subbase was included. Under construction inputs, users are asked whether the subbase is moist or dry (see figure 2).

File Edit View Strategy Compension Tools Help   Image: Strategy Compension Strategies Comparisons   Image: Strategy Compension Image: Strategy Compension   Strategy Status Invite Conditions   New Strategy Information Invite Conditions   Image: Strategy Information Image: Strategy Temperature:   Image: Strategy Information </th <th>₩ Untitled * - HIPERPAV III</th> <th></th>	₩ Untitled * - HIPERPAV III	
Image: Strategy       Strategy       Strategy       Strategy         Strategy       Strategy       Imital Conditions         New Strategy       Modified       Imital Conditions         New Strategy       Imital Conditions         New Strat	File Edit View Strategy Comparison Tools He	þ
Bit Bit With Strategy Status   New Strategy Status   New Strategy I Modified     Initial Conditions   Initial Support Layer Temperature:   70   Design   Caining Method   Strategy Information   Base is Moist   Base is Dry     Caining Method   Curing Method   Sawcutting is not recommended)   Sawcutting Vipping sawcutting is not recommended)   Sawcutting every:   Sawcutting every:   Sawcutting very:   Sawcutting very: <tr< td=""><td>🗅 🗲 🛍 📕 🎒 🖏 🛍 🖁 Proje</td><td>sct Info 🔀 Strategies 🔀 Comparisons</td></tr<>	🗅 🗲 🛍 📕 🎒 🖏 🛍 🖁 Proje	sct Info 🔀 Strategies 🔀 Comparisons
Strategy Status   New Strategy 1 Modified   Initial Conditions Initial PCC Mix Temperature:   75 *F   • Initial Support Layer Temperature:   70 *F   • Base is Moist   • Base is Moist   • Base is Moist   • Base is Moist   • Base is Dry    Curing Method Curing Method Curing Method: Single Coat Liquid Curing Compound   • PCC Properties   • PCC Properties   • PCC Properties   • Age Curing Applied:   • Passis   • Sawcutting (Skipping sawcutting is not recommended)   • C Saw al Optimum Time (Early-Entry "Green" Sawcuting)   • User Defined Sawing Age   • No Sawing   • Skipped Jointz:   • Strength for Opening to Traffic   • Displey strength for opening to traffic?   Strength Type: Splitting Tensile	📑 📑 🛃 🕼 📈 🛛 EAJPCP 🖵 Early	Age Construction
	Strategy       Status         New Strategy 1       Modified         Initial Unitial Unitial One       Initial Unitial Unitial Unitial One         Strategy 1       Modified         Design       General         Dowels       Stab Support         Statisk and Mix Design       Curing         Materials and Mix Design       Curing         PCC Properties       Age         Analysis       Savcr         Environment       Analysis         Evaporation Rate Analysis       Savcr         Sterent       Sterent         Strategy       Sterent	Conditions IPCC Mix Temperature: 75 °F • ISupport Layer Temperature: 70 °F • ase is Moist ase is Moist ase is Dry Method g Method: Single Coat Liquid Curing Compound • Curing Applied: 0 ÷ hours Curing Removed: 72 ÷ hours Atting (Skipping sawcutting is not recommended) awa d Optimum Time (Early-Entry "Green" Sawcutting) Jser-Defined Sawing Age 7 ÷ hours to Sawing Kip Sewcutting every: 2nd joint • awing Age of Skipped Joints: 24 ÷ hours th for Opening to Traffic Display strength for opening to traffic? trength: 350 psi • trength Type: Splitting Tensile

Figure 2. Screenshot. Construction input screen.

The effect of moisture loss to the base layer depends on the permeability of the base (the effect is more critical for a permeable base). The effect also depends on the slab thickness. For simplicity, the base moisture conditions in HIPERPAV[®] III represent only the two extremes: critical moisture loss to the base (dry permeable base) and low moisture loss (moist nonpermeable base). Therefore, base moisture content is defaulted as 0.3 and 0.9 at the dry and wet conditions, respectively. Future research is recommended to study this effect in more detail.

Although the selection of base moisture in HIPERPAV[®] III is rather subjective, if users believe that there is the potential for excess moisture loss from the slab to the base, an analysis for the dry base condition should be run to evaluate the cracking risk. Given the large effect of the base moisture condition, this input is available in both the simple and advanced strategy views.

#### **MOISTURE LOSS DUE TO EVAPORATION**

The new moisture model work focuses on characterizing the effect of moisture on drying shrinkage and warping stresses as well as its effect on strength gain. The evaporation rate analysis in HIPERPAV[®] III takes into account environmental conditions and concrete temperature to estimate evaporation loss from the surface of the concrete based on Menzel's equation.⁽¹⁾ The new moisture model does not impact the evaporation rate analysis. The goal of this project was not focused on developing the required models to properly characterize this effect; however, future work could be conducted to achieve this goal. The current moisture model would be a good start for that effort.

It should also be noted that other material parameters including the initial diffusivity and surface factor are computed by the HIPERPAV[®] III software program using the empirical equations.

#### **IMPROVED INTERFACE**

It has always been a goal for HIPERPAV[®] III to be as user friendly as possible. However, not all users have the same level of concrete knowledge or expertise. To help less experienced users understand what inputs are required and why, previous versions of HIPERPAV[®] included a help icon that linked users to more information. It became apparent that a link was not enough to help the most inexperienced users navigate through the software easily or intuitively. Therefore, HIPERPAV[®] III offers two views to help users: a simple view for the novice users and an advanced view for those with more experience. Users can choose which level best suits their needs by selecting accordingly from the "View" drop-down menu (see figure 3).



Figure 3. Screenshot. Simple strategy view.

The simple view requires limited input data and estimates variables that are otherwise inputs for an advanced level user. As a result, users navigate through fewer screens ("Design," "Mix Design," "Construction," and "Climate") arranged in a descending order on the left side of the screen. The analysis screen is the final screen in the list showing the stress and strength development once the analysis is run.

Like the simple view, the advanced view lists screens in a descending order. However, as seen in figure 4, users are required to supply more detailed information for the advanced level HIPERPAV[®] III interface. Default values are supplied in the advanced view for various inputs, but users are encouraged to supply job-specific information for optimal accuracy.

🚺 Untitled * - HIPERPAV III		
File Edit View Strategy Comparison	Tools Help	
D 🚅 🖬 日 🎒 陆 👗 🋍	Project Info 🔀 Strategies 🔀 Comparisons	
🖹 🖏 🖏 🕼 📈 🛛 EAJPCP 💌	Strategy Information	
Strategy Status New Strategy 1 Modified	User Name:	
	Date Last Analyzed:	
	Comments:	
Strategy Information  Design  General  Dowels  Slab Support  Materials and Mix Design  Cement  PCC Mix		<
<ul> <li>PCC Properties</li> <li>Maturity Data</li> <li>Construction</li> <li>Environment</li> <li>Analysis</li> <li>Evaporation Rate Analysis</li> </ul>		

Figure 4. Screenshot. Advanced strategy view.

Both the simple and advanced views predict early-age behavior of PCCP. The simple strategy view requires fewer inputs and estimates some variables based on built-in default values. However, the advanced strategy view provides more accurate predictions of PCCP early-age behavior as long as some default values are replaced with job-specific values.

For simplicity, both the evaporation rate analysis during the plastic state and the analysis results for tensile stress and strength during the first 72 hours after construction are presented on a single screen in the simple strategy view (see figure 5).



Figure 5. Screenshot. Simple strategy view analysis results.

## HEAT EVOLUTION CHARACTERIZATION

The ability to characterize the heat evolution of cement paste from semiadiabatic calorimetry testing improves precision of the HIPERPAV[®] III's mathematical models in predicting thermal stress and strength development.

Previous versions of HIPERPAV[®] III modeled heat evolution based on linear regression models related to cementitious materials chemistry. Heat of hydration influences thermal gradients and affects tensile stresses in early-age concrete. When available, these values can be entered directly into HIPERPAV[®] III in the advanced strategy view. Figure 6 shows where the heat evolution data can be entered. Figure 7 shows what information is required to calculate the heat of hydration based on semiadiabatic calorimetric test data.

Vintitled * - HIPERPAV III	
File Edit View Strategy Comparison To	ools Help
```₽`₽`₽`\$	Project Info Strategies Comparisons
🖹 🖏 🖳 🕼 📈 🛛 EAJPCP 💌	PCC Properties
Strategy Status New Strategy 1 Modified	PCC 28-Day Strength Strength=A×STR ^B Strength Type: Splitting Tensile 28-Day Strength (STR): 520 psi C Estimate from Strength Type C User-Defined
	PCC 28-Day Modulus Splitting Tensile Strength Coefficients
 Analysis Evaporation Rate Analysis 	Coefficient of Thermal Expansion Estimate from Aggregate Type User-Defined Aggregate CTE User-Defined PCC CTE Heat of Hydration Estimate from Mix User-Defined Import Data

Figure 6. Screenshot. Heat of hydration input data.

Calorimetry Test Data			
Total Heat of Hydration (J/kg) Estimate from Mix Liser-Defined Estimate from Mix Liser-Defined Time tau (hours)	40000	$\alpha(t_e) = \\ where, \alpha(t_e) \\ t_e \\ \alpha_u \\ \tau \\ \beta \end{cases}$	$\alpha_{u} \cdot \exp\left(-\left[\frac{\tau}{t_{e}}\right]^{\beta}\right)$ = degree of hydration at equivalent age, t_{e} , = equivalent age at reference temperature (21.1°C), (hrs), = ultimate degree of hydration, = hydration time parameter (hrs), and = hydration shape parameter.
Shape, beta	1.25		
Ultimate Degree of Hydration, alpha	0.82		<u>D</u> K

Figure 7. Screenshot. Semiadiabatic calorimetry input data required for heat of hydration calculations.

BATCH MODE ANALYSIS

A batch mode for analyzing multiple strategies at once has also been included in HIPERPAV[®] III. If users have multiple strategies that require analysis, all of the strategies can be run at once by selecting "Batch Mode" from the "Strategy" drop-down menu (see figure 8). A check box appears to the left of each strategy to show it has been selected for analysis. Users should check only the strategies to be analyzed. All strategies are automatically analyzed instead of having to run them one by one.

🚺 Untitled * -	HIPERPA	V III							
File Edit View	Strategy	Comparison	Tools	Help	_				
🗅 🗃 🖬 🖬	Add				ifo	8	Strategies	Comparisons	
B, D, B, B, B,	Copy Delete				Info	orma	ation		
Strategy	Renam	e							_
Cold Front	Validate	8			aluzi	ed:			
Cotton Mats	Use Thi Use Ori	is Strategy As iginal Defaults	Default		aye.				
L High wind	🖌 Batch N	1ode							 •
Strategy Ir	Run An	ialysis	_	F5					
🛛 🗁 📴 Design Mix Design	n								
Constructi	on								~
Analysis			1						

Figure 8. Screenshot. Batch mode analysis.

COMPARISONS MODULE

New sensitivity analysis tools can be found under the "Comparisons" tab (see figure 9). Two types of comparison analyses are available in HIPERPAV[®] III: "Quick Compare" and "Sensitivity Comparisons."

The "Quick Compare" screen offers users a chance to quickly discern differences between strategies in terms of design, materials, environmental inputs, and construction inputs as well as the resulting differences in strength gain, stress development, and cracking risk. The differences are presented in a side-by-side comparison. Previous versions of HIPERPAV[®] did not offer a side-by-side strategy comparison. Instead, users had to toggle back and forth between analysis screens of individual strategies to make comparisons.

One advantage of the "Quick Compare" tool is the ability to compare up to four individual strategies, reviewing how their differences affect concrete properties in a side-by-side comparison for each property. Users check which strategies are of interest (limit of four) and click the "Compare" button. A chart that lists the date and any input differences is generated. Users can toggle between the chart and graphs to provide a visual comparison between strategies

and their properties including strength, critical stresses, strength-to-stress differences, and stressto-strength ratios for each of the chosen strategies.

🐼 Untitled * - HIPERPAV III				
File Edit View Strategy Comparison	Tools Help		\frown	
D 🛩 🖆 🔛 🎒 🐚 🗼 🛍	🖹 Project Info 🛛 🕅	Strategi		
🖹 🗟 📈 🛛 EAJPCP 💌	Comparisons			
uick Compare	Select up to 10 Strategi	es		
🦾 🛅 Sensitivity Comparisons	Asphalt base (rough)		Compare
	Asphalt base (smoot	h) th Cri	itical Stress Strength to Stress Diffe	erence Stress to Strength Ratio
	Input	Unit	Asphalt base (rough)	Asphalt base (smooth)
	Analysis Date		12/18/2008 11:27:12 AM	12/18/2008 11:27:17 AM
	Material Type	:	Asphalt Concrete Subbase (Rough)	Asphalt Concrete Subbase (Smooth)
	Movement at Sliding	inches	0.01	5 0.02
	<			>

Figure 9. Screenshot. Quick compare chart of differences.

Similar to the quick compare option, the "Sensitivity Comparisons" tool also generates a chart and graphs through which users can toggle to compare. However, instead of comparing strategies, this tool compares the effects of changing input variables by selecting an existing strategy as a base case scenario. The advantage of the "Sensitivity Comparisons" tool is the ability to evaluate the effect of any input variable on strength and stress development for a single strategy and to see that effect in a side-by-side comparison.

To use this tool, users should click on "Sensitivity Comparisons" and add a comparison with the "Add" button on the upper left corner of the screen (see figure 10). A wizard screen pops up to select the strategy of interest. The input variable to be evaluated is then selected along with a range for that variable (if applicable) and an analysis interval. Figure 10 shows a sensitivity comparison for "Initial Mix Temperature." For this example, a range from 50 to 90 °F is used. Also, an interval of 10 °F is selected so that the wizard runs an analysis with an initial mix temperature from 50 to 90 °F at every 10 °F for a total of five runs. HIPERPAV[®] III then calculates the strength, critical stresses, strength-to-stress differences, and stress-to-strength ratios for the range of the input variable.

Semilivity asphalt hase, hp3 +1	UP CREAT IN		
	Project 3th	Add Sensitivity Comparison	
B R C EARCE	No Compariso	Bate Strategy Asphalt base (rough)	
Add Comparison button	No Comparison No Comparison Select 74dd Comp Click the Add 1	Barge Start Value (7) Start Value (7)	
			Cancel

Figure 10. Screenshot. Sensitivity comparison wizard.

Figure 11 presents the results from this sensitivity analysis in terms of stress-to-strength ratio. A summary tab is also available in this analysis to show the maximum stress-to-strength ratio for each analysis run in a bar graph as seen in figure 12. The bars are plotted in a color gradient from green (low cracking risk) to red (high cracking risk) to show the proximity to the critical stress-to-strength ratio of 100 percent (cracking risk threshold).

Figure 11. Screenshot. Stress-to-strength ratio screen.

Figure 12. Screenshot. Sensitivity summary screen for PCC mix temperature.

Most often, users of previous HIPERPAV[®] versions requested the ability to compare the effect of different times of construction without having to do individual strategies for each interval of time. The "Sensitivity Comparisons" tool gives users that ability—users identify a base strategy, select "Construction Time" as the variable to evaluate, and choose a range from 1 to 6 hours.

For this sensitivity analysis, users also have the option to use custom initial PCC mix and support layer temperatures for each analysis interval. If this information is not available, HIPERPAV[®] III can estimate these temperatures based on current environmental conditions for each construction time. This is done when users leave the check boxes under each of these inputs unchecked.

HIPERPAV[®] III calculates and generates charts and graphs accordingly. Similar to the previous example, users can see the effect that time of construction has on the stress-to-strength ratio. Figure 13 shows a summary of the stress-to-strength ratio for a time of construction sensitivity analysis. Users can easily see that in some morning hours, there is a higher probability of exceeding the cracking risk line.

Figure 13. Screenshot. Sensitivity summary screen for construction time.

ACKNOWLEDGMENTS

This project is sponsored by the Federal Highway Administration (FHWA). The authors would like to express their gratitude to the FHWA for their support.

Special thanks are extended to the technical working group members including Leif Wathne, Robert Rodden, Kevin McMullen, Gary Knight, and Lloyd Welker of the Ohio Department of Transportation.

Additional thanks are extended to FHWA staff including Fred Faridazar, Research and Development and Project Contracting Officer's Technical Representative; Rick Meininger, Research and Development; Jussara Tanesi, Research and Development; Gary Crawford, Office of Pavement Technology; Jim Grove, Office of Pavement Technology; and Jagan Gudimettla, Office of Pavement Technology and Mobile Concrete Lab.

REFERENCE

1. Menzel, C.A. (1954). "Causes and Prevention of Crack Development in Plastic Concrete," Proceedings, 130–136, Portland Cement Association Annual Meeting, Skokie, IL.

